A Pictorial Technique for Mass Screening of Sorghum Germplasm for Anthracnose (Colletotrichum sublineolum) Resistance

نویسندگان

  • Louis K. Prom
  • Ramasamy Perumal
  • John Erpelding
  • Thomas Isakeit
  • Clint W. Magill
چکیده

Globally, the foliar phase of anthracnose is one of the most destructive diseases of sorghum. In most cases, anthracnose resistance screening relies on the use of a spore suspension. This method is usually conducted after sundown and when there is the possibility of dew formation the following morning. Using a spore suspension for sorghum anthracnose field evaluation in College Station, Texas over five years (1996, 1997, 1999-2001) yielded inconsistent linkage results and failed to identify any closely linked molecular markers. For large scale screening of sorghum germplasm for anthracnose (Colletotrichum sublineolum) resistance, plants are inoculated in the field or in the green house at either 30 d after planting or at the 8-10 leaf-stage. In field inoculation, the use of C. sublineolum-colonized sorghum grains was shown to be the most efficient and effective in identifying resistant sources. For effective, efficient, fast and accurate infection, approximately 10-20 seeds are placed in each plant leaf whorl and it takes about 16.7 kg of colonized grains to cover a 0.4 ha area. In the greenhouse, though colonized grains are equally effective, spray inoculation is preferred for easy and uniform coverage. Using this method of inoculum preparation, spore suspension was extracted and sprayed (10 6 conidia·ml -1 ), followed by 10 hr/d misting for 30 sec at 30-45 min interval continuously for a period of one month resulted in effective infection.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Response of Sorghum Accessions from Four African Countries against Colletotrichum sublineolum, Causal Agent of Sorghum Anthracnose

Seventy-two sorghum accessions were randomly selected from the Ethiopia, Mali, Sudan, and Uganda germplasm collections maintained by the US National Plant Germplasm System to evaluate variation in anthracnose resistance. The accessions were planted in a randomized complete block design in College Station, Texas during the 2007 and 2008 growing seasons. Twenty-six accessions exhibited a resistan...

متن کامل

Field Evaluation of Anthracnose Resistance for Sorghum Germplasm from the Sikasso Region of Mali

Sorghum anthracnose is a highly variable pathogen and occurs in most sorghum producing regions worldwide. The disease can be managed using resistant varieties, but additional sources of resistance are needed for sorghum improvement. Germplasm collections are an important resource for the identification of host plant resistance and the 132 sorghum landraces from the Sikasso region of Mali were i...

متن کامل

The wheat Lr34 multipathogen resistance gene confers resistance to anthracnose and rust in sorghum

The ability of the wheat Lr34 multipathogen resistance gene (Lr34res) to function across a wide taxonomic boundary was investigated in transgenic Sorghum bicolor. Increased resistance to sorghum rust and anthracnose disease symptoms following infection with the biotrophic pathogen Puccinia purpurea and the hemibiotroph Colletotrichum sublineolum, respectively, occurred in transgenic plants expr...

متن کامل

Flavonoid phytoalexin-dependent resistance to anthracnose leaf blight requires a functional yellow seed1 in Sorghum bicolor.

In Sorghum bicolor, a group of phytoalexins are induced at the site of infection by Colletotrichum sublineolum, the anthracnose fungus. These compounds, classified as 3-deoxyanthocyanidins, have structural similarities to the precursors of phlobaphenes. Sorghum yellow seed1 (y1) encodes a MYB transcription factor that regulates phlobaphene biosynthesis. Using the candystripe1 transposon mutagen...

متن کامل

Identification of flavone phytoalexins and a pathogen-inducible flavone synthase II gene (SbFNSII) in sorghum

Following inoculation with the anthracnose pathogen Colletotrichum sublineolum, seedlings of the sorghum resistant cultivar SC748-5 showed more rapid and elevated accumulation of luteolin than the susceptible cultivar BTx623. On the other hand, apigenin was the major flavone detected in infected BTx623 seedlings. Luteolin was demonstrated to show stronger inhibition of spore germination of C. s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009